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Abstract. We prove new velocity averaging results for second-order multidimensional equa-
tions of the general form, L(∇x, v)f(x, v) = g(x, v) where L(∇x, v) := a(v) ·∇x −∇>

x ·b(v)∇x.
These results quantify the Sobolev regularity of the averages,

∫
v f(x, v)φ(v)dv, in terms of

the non-degeneracy of the set {v : |L(iξ, v)| ≤ δ} and the mere integrability of the data,
(f, g) ∈ (Lp

x,v, L
q
x,v). Velocity averaging is then used to study the regularizing effect in quasi-

linear second-order equations, L(∇x, ρ)ρ = S(ρ) using their underlying kinetic formulations,
L(∇x, v)χρ = gS . In particular, we improve previous regularity statements for nonlinear con-
servation laws, and we derive completely new regularity results for convection-diffusion and
elliptic equations driven by degenerate, non-isotropic diffusion.
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2 EITAN TADMOR AND TERENCE TAO

1. Introduction

We study the regularity of solutions to multidimensional quasilinear scalar equations of the
form

d∑

j=0

∂

∂xj
Aj(ρ) −

d∑

j,k=1

∂2

∂xj∂xk
Bjk(ρ) = S(ρ)(1.1)

where ρ : R1+d → R is the unknown field and Aj, Bjk, S are given functions from R to R.
This class of equations governs time-dependent solutions, ρ(t= x0, x), of nonlinear conser-

vation laws where A0(ρ) = ρ and Bjk ≡ 0, time-dependent solutions of degenerate diffusion
and convection-diffusion equations where {B′

jk} ≥ 0, and spatial solutions, ρ(x), of degenerate
elliptic equations where Aj ≡ 0. The notion of solution should be interpreted here in an appro-
priate weak sense, since we focus our attention on the degenerate diffusion case, which is too
weak to enforce the smoothness required for a notion of a strong solution. Instead, a common
feature of such problems is the (limited) regularity of their solutions, which is dictated by the
nonlinearity of the governing equations. A prototype example is provided by discontinuous
solutions of nonlinear conservation laws. In [LPT94a], Lions, Perthame & Tadmor have shown
that entropy solutions of such laws admit a regularizing effect of a fractional order, dictated
by the order of non-degeneracy of the equations. In this paper we extend this result for the
general class of second-order equations (1.1). In particular, we improve the [LPT94a]-regularity
statement for nonlinear conservation laws, and we derive completely new regularity results for
convection-diffusion and elliptic equations driven by degenerate, non-isotropic diffusion.

The derivation of these regularity results employs a kinetic formulation of (1.1). To describe
this formulation let us proceed formally, seeking an equation which governs the indicator func-
tion, χρ(x)(v) := sgn(v)(|ρ|−|v|)+ associated with ρ, and which depends on an auxiliary velocity
variable v ∈ R, borrowing the terminology from the classical kinetic framework. To this end,
we consider the distribution g = g(x, v), defined via its velocity derivative ∂vg using the formula

∂vg(x, v) :=
(
a(v) · ∇x −∇>

x · b(v)∇x + S(v)∂v

)
χρ(x)(v), aj := A′

j, bjk := B′
jk ≥ 0.(1.2)

Observe that the nonlinear quantities Φ(ρ) can be expressed as the v-moments of χρ, Φ(ρ) ≡∫
v
Φ′(v)χρ(v)dv, Φ(0) = 0. Therefore, by velocity averaging of (1.2) we recover (1.1). Moreover,

for a proper notion of weak solution ρ, one augments (1.1) with additional conditions on the
behavior of Φ(ρ) for a large enough family of entropies Φ’s. These additional entropy conditions
imply that g is in fact a positive distribution, g = m ∈ M+, measuring the entropy dissipation
of the nonlinear equation. We arrive at the kinetic formulation of (1.1)

L(∇x, v)f(x, v) = ∂vm− S(v)∂vχρ(x)(v), f = χρ, m ∈ M+(1.3)

where L is identified with the linear symbol L(iξ, v) := a(v) · iξ + 〈b(v)ξ, ξ〉. We recall
that ρ(x) itself can be recovered by velocity averaging of f(x, v) = χρ(v), via the identity
ρ(x) =

∫
f(x, v) dv. In Section 2 we discuss the regularity gained by such velocity averaging.

There is a relatively short yet intense history of such regularity results, commonly known as
‘velocity averaging lemmata’. We mention the early works of [GLPS88], [DLM91] and their
applications, in the context of nonlinear conservation laws, in [LPT94a, LPT94b, LPS96, JP02];
a detailed list of references can be found in [Pe02] and is revisited in Section 2 below. Almost
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all previous averaging results dealing with (1.3) were restricted to first-order transport equa-
tion, degL(iξ, ·) = 1. In Section 2.2 we present an extension to general symbols L’s which
satisfy the so called truncation property; luckily — as shown in Section 2.4 below, all L’s with
degL(iξ, ·) ≤ 2 satisfy this property. If the problem is non-degenerate in the sense that∗

∃α ∈ (0, 1), β > 0 s.t. sup
|ξ|∼J

∣∣{v : |L(iξ, v)| ≤ δ
}∣∣ <∼

( δ

Jβ

)α
,

then by velocity averaging of the kinetic solution f in (1.3), ρ(x) =
∫
v
f(x, v)dv has a W s,r-

regularity of order s < βα/(3α + 2) with an appropriate r = rs > 1; consult (2.25) below. In
the particular case of non-degenerate homogeneous symbols of order k,

∃α ∈ (0, 1) s.t. sup
|ξ|=1

∣∣{v : |L(iξ, v)| ≤ δ
}∣∣ <∼ δ

α,

we may take β = k and velocity averaging implies a W s,r
loc -regularity exponent s < kα/(3α+2).

The main results are summarized in averaging lemmata 2.2 and 2.3.
In Section 3 we turn to the first application of these averaging results in the context of

nonlinear conservation laws, ρt +∇ ·A(ρ) = 0, subject to L∞-initial data ρ0. If the equation is
non-degenerate of order α in the sense that

∣∣ {v : |τ + a(v) · ξ| ≤ δ}
∣∣ <∼ δ

α and sup
{v: |τ+a(v)·ξ|≤δ}

|a′(v) · ξ| <∼ δ
1−α, ∀ τ 2 + |ξ|2 = 1,

then for t > 0, the entropy solution ρ(t, x) gains Sobolev regularity ρ(t, ·) ∈ W s,1
loc(R

d
x) of order

s < sα = α/(2α+1). This improves the Sobolev-regularity exponent of order α/(α+2) derived
at [LPT94a] (while facing the same barrier of s1 = 1/3 discussed in [DLW05]).

Section 4 is devoted to convection-diffusion equations. We begin, in Section 4.1, with second-
order degenerate diffusion ρt −

∑
∂2
xjxk

Bjk(ρ) = 0. The emphasis here is on non-isotropic

diffusion, beyond the prototype case of the porous medium equation (which corresponds to
the case when Bjk is a scalar multiple of the identity, Bjk = Bδjk). The regularizing effect is
determined by the smallest non-zero eigenvalue λ(v) = λ(b(v)) ≡/ 0 of b(v) := B′(v), so that

∣∣ {v : 0 ≤ λ(v) ≤ δ}
∣∣ <∼ δ

α and sup
{v: λ(v)≤δ}

|〈b′(v)ξ, ξ〉| <∼ δ
1−α, ∀ |ξ| = 1.(1.4)

Staring with initial conditions ρ0 ∈ L∞, then the corresponding kinetic solution ρ(t > 0, ·) gains
W s,1

loc -regularity of order s < 2α/(2α + 1). In Section 4.2 we take into account the additional
effect of nonlinear convection. The resulting convection-diffusion equations, coupling degenerate
and possibly non-isotropic diffusion with non-convex convection governing capillarity effects,
are found in a variety of applications. Consider the prototype one-dimensional case

ρt + A(ρ)x −B(ρ)xx = 0, A′(ρ) ∼ ρ`, B′(ρ) ∼ |ρ|n.
The regularizing effect is dictated by the strength of the degenerate diffusion vs. the convective
degeneracy. If n ≤ ` we find W s,1

loc -regularity of order s < 2/(n+2), which is the same Sobolev-
regularity exponent we find with the ‘purely diffusive’ porous-medium equation, i.e., when
A = 0. On the other hand, if the diffusion is too weak so that n ≥ 2`, we then conclude with a
Sobolev-regularity exponent of order s < 1/(`+2), which is dominated by the convective part of
the equation. In Section 4.2 we present similar results for multidimensional convection-diffusion

∗We use X <∼ Y to denote the estimate X ≤ CY where C is a constant which can depend on exponents such
as α, β, p and on symbols such as L, Aj , Bjk but is independent of fields such as ρ, co-ordinates such as x, t, v,
and scale parameters such as δ. We use X ∼ Y to denote the assertion that X <∼ Y <∼ X .
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equations with increasing degree of degeneracy. In particular, consider the two-dimensional
equation

ρt + (∂x1 + ∂x2)A(ρ) − (∂x1 − ∂x2)
2B(ρ) = 0.

If we set A = 0, the equation has a strong, rank-one parabolic degeneracy with no regularizing
effect coming from its purely diffusion part, since 〈b(v)ξ, ξ〉 ≡ 0, ∀ξ1 − ξ2 = 0, indicating
the persistence of steady oscillations, ρ0(x + y); moreover, if B = 0 then the equation has no
regularization coming from its purely convection part, since a(v) · ξ ≡ 0, ∀ξ1 + ξ2 = 0 indicates
the persistence of steady oscillations ρ0(x−y). Nevertheless, the combined convection-diffusion
with A(ρ) ∼ ρ`+1 and B(ρ) ∼ |ρ|nρ does have W s,1-regularizing effect of order s < 6/(2+2n−`)
for n ≥ 2`, consult corollary 4.5 below.

Finally, in Section 5 we consider degenerate elliptic equations, −
∑
∂2
xjxk

Bjk(ρ) = S(ρ). As-

suming that the non-degeneracy condition (1.4) holds, then the kinetic formulation of bounded
solutions for such equations, ρ ∈ W s,1(D), have interior regularity of order s < min(α, 2α/(2α+
1)). We conclude by noting that it is possible to adapt our arguments in more general setups,
for example, when a suitable source term S(ρ) it added to the time dependent problem, when
dealing with degenerate temporal fluxes, ∂tA0(ρ), A

′
0 ≥ 0, or when lower-order convective terms,

∇x · A(ρ), are added in the elliptic case.

2. The averaging lemma

We are concerned with the regularity of averages of solutions for differential equations of the
form

L(∇x, v)f = Λη
x∂

N
v g, Λx := (−∆2

x)
1/2.(2.1)

Here, f = f(x, v) ∈ W σ,p
loc (Rd

x × Rv) and g = g(x, v) ∈ Lqloc(Rd
x×Rv) are real-valued functions of

the spatial variables x = (x1, . . . , xd) ∈ Rd and an additional parameter v ∈ R, called velocity
by analogy with the kinetic framework, and L(∇x, v) is a differential operator on Rd

x of order
≤ k, whose coefficients are smooth functions of v.

The velocity averaging lemma asserts that if L(·, v) is nondegenerate in the sense that its
null set is sufficiently small — to be made precise below, then the v-moments of f(x, ·),

f(x) :=

∫

v

f(x, v)φ(v)dv, φ ∈ C∞
0 ,

are smoother than the usual regularity associated with the data of f(x, ·) and g(x, ·). That
is, by averaging over the so-called microscopic v-variable, there is a gain of regularity in the
macroscopic x-variables. There is a relatively short yet intense history of such results, motivated
by kinetic models such as Boltzmann, Vlasov, radiative transfer and similar equations where
the v-moments of f represent macroscopic quantities of interest. We refer to the early works of
Agoshkov [Ag84] and Golse, Lions, Perthame and Sentis, [GPS85, GLPS88] treating first-order
transport operators with f, g integrability of order p = q > 1. The work of DiPerna, Lions and
Meyer, [DLM91], provided the first treatment of the general case p 6= q, followed by Bézard,
[Be94], their optimality in [Li95] and an optimal Besov regularity result of DeVore and Petrova,
[DVP00].

Extensions to more general streaming operators were treated by DiPerna and Lions in
[DL89a, DL89b] with applications to Boltzmann and Vlasov-Maxwell equations, and by Li-
ons, Perthame and Tadmor in [LPT94a] with applications to nonlinear conservation laws
and related parabolic equations. Gérard, [Ge90] together with Golse [GG92] provided an
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L2-treatment of general differential operators. A different line of extensions consists of ve-
locity lemmata which take into account different orders of integrability in x and v, leading to
sharper velocity regularization results sought in various application. We refer to the results
in [DLM91] for f ∈ Lp1(Rv, L

p2(Rd
x)), g ∈ Lq1(Rv, L

q2(Rd
x)) and to Jabin and Vega [JV03] for

f ∈ WN1,p1(Rv, L
p2(Rd

x)), g ∈ WN2,q1(Rv, L
q2(Rd

x)). Westdickenberg, [We02], analyzed a general
case of the form f ∈ Bσ

p1,p2(R
d
x, L

r1(Rv)), g ∈ Bσ
q1,q2(R

d
x, L

r2(Rv)). Jabin, Perthame and Vega,

[JP02], [JV04] used a mixed integrability of f ∈ Lp(Rd
x,W

N1,p(Rv)), g ∈ Lq(Rd
x,W

N2,q(Rv)) to
improve the regularizing results for nonlinear conservation laws [LPT94a], [LPT94b], Ginzburg-
Landau, and other nonlinear models. Golse and Saint-Raymond, [GSR02] have shown that a
minimal requirement of equi-integrability, say f ∈ L1(Rd

x, L
Φ(Rv)), g ∈ L1(Rd

x × Rv) measured
in Orlicz space LΦ with super-linear Φ, is sufficient for relative compactness of the averages f ,
which otherwise might fail for mere L1-integrability, [GLPS88].

The derivation of velocity averaging in the above works was accomplished by various methods.
The main approach, which we use below, is based on decomposition in Fourier space, carefully

tracking f̂(ξ, v) in the “elliptic” region where {v : L(iξ, v) 6= 0}, and the complement region
which is made sufficiently small by a non-degeneracy assumption. Other approaches include the
use microlocal defect measures and H-measures [Ge90, Ta90], wavelet decomposition [DVP00]
and “real-space methods” — in time [Va99, BD99], and in space-time using Radon transform
[Ch00, We02], X-transform [JV03, JV04] and duality-based dispersion estimates [GSR02]. Al-
most all of these results are devoted to the phenomena of velocity averaging in the context of
transport equations, k = 1,

Our study of velocity averaging applies to a large class of L’s, satisfying the so-called trun-
cation property: in Section 2.4 we show that all L’s of order k ≤ 2 satisfy this truncation
property. In particular, we improve the regularity statement for first-order velocity averaging
and extend the various velocity averaging results of the works above from first-order transport
to general second-order transport-diffusion and elliptic equations. The results are summarized
in the averaging lemmata 2.1 and 2.2 for homogeneous symbols and in averaging lemma 2.3
for general, truncation-property-satisfying L’s. Our derivation is carried out in Fourier space
using Littlewood-Paley decompositions of f ∈ W σ,p

loc (Rd
x × Rv) and g ∈ Lqloc(Rd

x× Rv). To avoid
an overload of indices, we leave for future work possible extensions for more general data with
mixed (x, v)-integrability of f and g.

2.1. The truncation property. We now come to a fundamental definition.

Definition 2.1. Let m(ξ) be a complex-valued Fourier multiplier. We say that m has the trun-
cation property if, for any locally-supported bump function ψ on C and any 1 < p < ∞,
the multiplier with symbol ψ(m(ξ)/δ) is an Lp-multiplier uniformly in δ > 0, that is, its Lp-
multiplier norm depends solely on the support and C` size of ψ (for some large ` which may
depend on m) but otherwise is independent of δ.

In Section 2.4 we will describe some examples of multipliers with this truncation property.
Equipped with this notion of a truncation property, we turn to discuss the Lp-size of parame-
terized multipliers. Let

Mψf(x, v) := F−1
x ψ

(m(ξ, v)

δ

)
f̂(ξ, v), where f̂(ξ, v) = Fxf(ξ, v) :=

∫

Rd

e−2πiξ·xf(x, v) dx
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denote the operator associated with the complex-valued multiplier m(·, v), truncated at level
δ. Our derivation of the averaging lemmata below is based on the following straightforward
estimate for such parameterized multipliers.

Lemma 2.1 (Basic Lp estimate). Let I be a finite interval, I ⊂ Rv and assume m(ξ, v) satisfies
the truncation property uniformly in v ∈ I. Let 1 < p ≤ 2. Let Mψ denote the velocity-
averaged Fourier multiplier

Mψf(x) :=

∫

I

Mψf(x, v) dv =

∫

I

F−1
x ψ(m(ξ, v)/δ)Fxf(x, v) dv.

For each ξ ∈ Rd and δ > 0 let Ωm(ξ; δ) ⊂ I be the velocity set

Ωm(ξ; δ) :=
{
v ∈ I :

m(ξ, v)

δ
∈ supp ψ

}
.

Then we have the Lp multiplier estimate

‖Mψf(x)‖Lp(Rd
x)

<∼ sup
ξ

|Ωm(ξ; δ)|
1
p′ · ‖f‖Lp(Rd

x×Rv)(2.2)

Proof. For p = 2, the claim (2.2) follows from Plancherel’s theorem and Cauchy-Schwarz in-
equality, while for p close to 1+ the claim follows (ignoring the bounded |Ωm(ξ; δ)|-factor) from
the assumption that m(ξ, v) satisfies the truncation property uniformly in v (and in fact, the
end point p = 1, with the usual H1-replacement of L1, can be treated by a refined argument
along the lines of [DLM91]). The general case of 1 < p < 2 follows by interpolation.

Remark 2.1. Clearly, if m(ξ, ·) and c(ξ) are Lp-multipliers then so is their product, and in
particular, if m has the truncation property then (2.2) applies for ψ(m(ξ, v)/δ)c(ξ).

2.2. Averaging lemma for homogeneous symbols. We will present several versions of the
averaging lemma. The later versions will supercede the former, but for pedagogical reasons
we will start with the simpler case of homogeneous symbols. In this case it is convenient to
use polar co-ordinates ξ = |ξ|ξ′, where ξ′ ∈ Sd−1 is defined for all non-zero frequencies ξ by
ξ′ := ξ/|ξ|.

We begin with

Averaging Lemma 2.1. Let 1 ≤ q ≤ 2 and let g ∈ Lqloc(R
d
x×Rv) if q > 1 or let g be a locally

bounded measure, g ∈ M(Rd
x × Rv) if q = 1. Let η,N ≥ 0 and let f ∈ W σ,p

loc (Rd
x × Rv), σ ≥

0, 1 < p ≤ 2 solves the equation

L(∇x, v)f(x, v) = Λη
x∂

N
v g(x, v) in D′(Rd

x × Rv).(2.3)

Here, L(∇x, ·) is a differential operator with sufficiently smooth coefficients, L(·, v) ∈ CN,ε>0,
and let L(iξ, v) be the corresponding symbol. We assume that L(iξ, v) is homogeneous in ξ of
order k, k > σ + η, that the modified symbol L(iξ′, v) obeys the truncation property uniformly
in v, and that it is nondegenerate in the sense that there exists an α, 0 < α < (N + 1)q′, such
that

sup
ξ∈Rd:|ξ|=1

|ΩL(ξ; δ)| <∼ δ
α, ΩL(ξ; δ) :=

{
v ∈ I : |L(iξ, v)| ≤ δ

}
.(2.4)
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Then, there exist θ = θα ∈ (0, 1) and sα = s(θα) > σ such that for all bump functions
φ ∈ C∞

0 (I), the averages f(x) :=
∫
f(x, v)φ(v)dv belong to the Sobolev space W s,r

loc (Rd
x) for

all s ∈ (σ, sα) and the following estimate holds

‖f‖W s,r
loc (Rd

x)
<∼ ‖g‖θLq

loc(Rd
x×Rv) · ‖f‖

1−θ
Wσ,p

loc (Rd
x×Rv)

, s ∈ (σ, sα), sα := (1 − θα)σ + θα(k − η).(2.5)

Here θ ≡ θα(p, q, N) and r are given by

θ =
α/p′

α(1/p′ − 1/q′) +N + 1
,

1

r
=

1 − θ

p
+
θ

q
, 0 < θ < 1.(2.6)

Remark 2.2. It would be more natural to assume that the symbol L(iξ, v) itself, rather than
the modified symbol L(iξ′, v), obeyed the truncation property, as it is typically easier to verify
the truncation property for the unmodified symbol. Indeed when we turn to more advanced
versions of the averaging lemma (which rely on Littlewood-Paley theory, and which do not
assume homogeneity) we will work with the truncation property for the unmodified symbol.
However we choose to work here with the modified symbol as it simplifies the argument slightly.

Proof. We start with a smooth partition of unity, 1 ≡
∑
ψj(2

−jz) such that ψ0 is a bump
function supported inside the disc |z| ≤ 2 and the other ψj’s are bump functions supported on
the annulus 1/2 < |z| < 2 (we note in passing that the other ψj’s can be taken to be equal, so
the index j merely serves to signal their ‘action’ on the shells, 2j−1 ≤ |z| ≤ 2j+1). We set

fj(x, v) := F−1
x ψj

(L(iξ′, v)

2jδ

)
f̂(ξ, v), j = 0, 1, 2 . . . ,

recalling that ξ′ := ξ/|ξ|, and we consider the corresponding decomposition f = f0 +
∑

j≥1 fj.

We distinguish between two pieces, f = f (0)+f (1) where f (0) := f0 and f (1) :=
∑

j≥1 fj. Observe

that the v-support of f̂ (0) is restricted to the degenerate set ΩL(ξ; δ) whereas f̂ (1) =
∑

j≥1 f̂j
offers a decomposition of the non-degenerate complement, Ωc

L(ξ; δ). The free parameter δ is to
be chosen later.

We start by noting that f (0) = f0 is associated with the multiplier ψ0(L(iξ′, v)/δ). Since
L(iξ′, v) satisfies the truncation property, we can use Lemma 2.1 and non-degeneracy assump-
tion (2.4), to obtain

‖f (0)‖Wσ,p
loc (Rd

x)
<∼ sup

|ξ|=1

∣∣∣ΩL(ξ; δ)
∣∣∣
1/p′

· ‖f‖Wσ,p
loc (Rd

x×Rv)
<∼ δ

α/p′‖f‖Wσ,p
loc (Rd

x×Rv).(2.7)

We turn to the other averages, fj, j ≥ 1 which make f (1). Since L(iξ, ·) is homogeneous of
order k, equation (2.3) states that

Λ̂k−η
x f̂(ξ, v) = |ξ|k−η |ξ|η

L(iξ, v)
∂Nv ĝ(ξ, v) =

1

L(iξ′, v)
∂Nv ĝ(ξ, v),

and thus,

Λk−η
x fj =

1

2jδ
F−1
x

∫

v

ψ̃j

(L(iξ′, v)

2jδ

)
∂Nv ĝ(ξ, v)φ(v)dv, j = 1, 2, . . . ,

where ψ̃j(z) := ψj(z)/z is a bump function much like ψj is. Integration by parts then yields

Λk−η
x fj =

1

(2jδ)N+1
F−1
x

∫

v

ψ̃j
(N)

(L(iξ′, v)

2jδ

)
LNv (iξ′, v) ĝ(ξ, v)φ(v)dv +(2.8)

+ lower order or similar terms.
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We can safely neglect the lower or similar order terms which involve (powers of) the bounded
multipliers ∂`vL(iξ′, v), ` < N and we focus on the leading term in (2.8), associated with the
multipliers

ψ̃j
(N)

(L(iξ′, v)

2jδ

)
LNv (iξ′, v).(2.9)

By Hörmander-Mikhlin or Marcinkeiwicz multiplier theorems, LNv (iξ′, v) are bounded multipli-
ers and hence (2.8) are upper-bounded by

‖Λk−η
x fj‖Lq

loc(Rd
x)

<∼
1

(2jδ)N+1
‖Mjg‖Lq

loc(Rd
x).

Here Mj = M
ψ̃j

(N) are the Fourier multipliers with symbol ψ̃j
(N)

(L(iξ′, v)/2jδ).

We now fix q > 1. By our assumption, L(iξ′, v) satisfies the truncation property, and Lemma
2.1 implies ‖Mjg‖Lq

loc(Rd
x)

<∼ (2j+1δ)α/q
′‖g‖Lq

loc(Rd
x). Adding together all the fj’s, we find that

f (1) =
∑

j≥1 fj satisfies

‖Λk−η
x f (1)‖Lq

loc(Rd
x)

<∼
∑

j≥1

1

(2jδ)N+1
(2j+1δ)

α
q′ ‖g‖Lq

loc(Rd
x×Rv)

<∼ δ
α
q′ −(N+1)‖g‖Lq

loc(Rd
x×Rv).(2.10)

Thus, if we fix t > 0 and choose δ to equilibrate the bounds in (2.7) and (2.10),

δα(1/p′−1/q′)+N+1 ∼ t‖g(x, v)‖Lq
loc
/‖f(x, v)‖Wσ,p

loc
,

then this tells us that

inf
f(0)+f(1)=f

[
‖f (0)‖Wσ,p

loc (Rd
x) + t‖f (1)‖Ẇ k−η,q

loc (Rd
x)

]
<∼ t

θ · ‖g(x, v)‖θLq
loc(Rd

x×Rv) · ‖f(x, v)‖1−θ
Wσ,p

loc (Rd
x×Rv)

,

and the desired W s,r
loc -bound follows for s < (1 − θ)σ + θ(k − η) with θ given in (2.6). The

remaining case of q = 1 can be converted into the previous situation using Sobolev embedding.
In this case, g being a measure, it belongs to W−ε,qε for all (ε, qε) such that

g ∈ W−ε,qε,
d+ 2

q′ε
< ε < 1 < qε <

d+ 2

d+ 1
,

and hence (2.5) applies for s < (1−θ)σ+θ(k−η−ε) and θ = θα(p, qε, N); we then let ε approach
0+ so that qε approaches arbitrarily close to 1+ to recover (2.5) with sα and θα(p, 1, N).

Remark 2.3. As an example consider a (possibly, pseudo-)differential operator L(∇x, ·) of order

k and let f(x, v) ∈ W σ,2
loc such that L(∇x, v)f ∈ W σ−k+1,2

loc . Assume that Lv(iξ, v) 6= 0 so that
the nondegeneracy condition (2.4) holds with α = 1. Application of the averaging lemma 2.1
with p = q = 2, N = 0 and η = k− σ − 1 then yields the gain of half a derivative, f(x) ∈ W s,2

loc

with s < σ/2+ (σ+1)/2 = σ+1/2, in agreement with [GG92, Theorem 2.1]. The main aspect
here is going beyond the L2-framework, while allowing for general and possibly different orders
of integrability, (f, g) ∈ (W σ,p, Lq).

Remark 2.4. The limiting case of the interpolation estimate (2.5), θ = 1, s = sα, corresponds
to Besov regularity f ∈ Bs,r

t=∞(Rd
x). This regularity can be worked out using a more precise

bookkeeping of the Littlewood-Paley blocks. For the transport case, k = 1, it was carried
out first in [DLM91, Theorem 3], improved in [Be94] and a final refinement with a secondary
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index t = p can be found in [DVP00]. This limiting case is encountered in the particular
situation when k = η, so that the interval (σ, sα) ‘survives’ at θ = 1. Here, one cannot
expect for regularizing effect, but there is a persistence of relative compactness of the mapping
g(x, v) 7→ f(x), [PS98].

To gain a better insight into the last averaging lemma, we focus our attention on the case
where f is a W σ,p

loc -solution of

L(∇x, v)f(x, v) = ∂vg(x, v), g ∈ Lqloc(R
d
x × Rv), f ∈ W σ,p

loc (Rd
x × Rv),(2.11)

corresponding to the special case η = 0 and N = 1 in (2.3). This case will suffice to cover all
the single-valued applications we have in mind for the discussion in Sections 3, 4 and 5 without
the burden of carrying out an excessive amount of indices. The averaging lemma (2.1) implies
that f(x) has Sobolev regularity of order s < (1 − θ)σ + θk,

‖f‖W s,r
loc (Rd

x)
<∼ ‖g‖θLq

loc(Rd
x×Rv) · ‖f‖

1−θ
Lp

loc(Rd
x)
, θ ≡ θα :=

α/p′

α(1/p′ − 1/q′) + 2
.(2.12)

The last regularity statement can be improved. To this end, we revisit the dyadic multipliers

in (2.9), ψ̃j
(N)(

L(iξ′, v)/2jδ
)
LNv (iξ′, v). The key observation is that Lv(iξ′, v) acts only on the

subset of v’s — those which belong to v ∈ ΩL(ξ′; 2j+1δ). Linking the size of Lv(iξ′, v) to that
of L(iξ′, v), we arrive at the following improved averaging regularity lemma.

Averaging Lemma 2.2. Let f ∈ W σ,p
loc (Rd

x × Rv), σ ≥ 0, 1 < p ≤ 2, solves the equation

L(∇x, v)f(x, v) = ∂vg(x, v), g ∈
{
Lq(Rd

x × Rv), 1 < q ≤ 2,
M(Rd

x × Rv), q = 1.(2.13)

Let L(iξ, v) be the corresponding symbol. We assume that L(iξ, v) is homogeneous in iξ of order
k, k > σ, that the modified symbol L(iξ′, v) satisfies the truncation property uniformly in v, and
that it is nondegenerate in the sense that there exists an α, 0 < α < q′, such that (2.4) holds.
Moreover, assume that

∃µ ∈ [0, 1] s.t. sup
|ξ|=1

sup
v∈ΩL(ξ;δ)

|Lv(iξ, v)| <∼ δ
µ, ΩL(ξ; δ) := {v ∈ I : |L(iξ, v)| ≤ δ} .(2.14)

Then, there exist θ = θα ∈ (0, 1) and r given by

θ :=
α/p′

α(1/p′ − 1/q′) + 2 − µ
,

1

r
:=

1 − θ

p
+
θ

q
,(2.15)

such that for all bump functions φ ∈ C∞
0 (I), the averages f(x) :=

∫
f(x, v)φ(v)dv belong to the

Sobolev space W s,r
loc (Rd

x) for all s ∈ (σ, sα), sα = (1 − θα)σ + θαk and (2.5) holds.

For the proof we revisit (2.8) with η = 0, N = 1,

Λk
xfj =

1

(2jδ)2
F−1
x

∫

v

∂zψ̃j

(L(iξ′, v)

2jδ

)
Lv(iξ′, v)ĝ(ξ, v)φ(v)dv.

Its bound in (2.10) can now be improved by the extra factor of
(
2j+1δ

)µ
which follows from

(2.14), yielding

‖Λk
xfJ ‖Lq

loc(Rd
x)

<∼
∑

j≥1

1

(2jδ)2
(2j+1δ)

α
q′ +µ‖g‖Lq

loc(Rd
x×Rv)

<∼ δ
α
q′−(2−µ)‖g‖Lq

loc(Rd
x×Rv),

and we conclude by arguing along the lines of the averaging lemma 2.1. 2
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Remark 2.5. In the generic case of a symbol L(iξ, v) which is analytic in iξ uniformly in v, the
‘degeneracy of order α’ in (2.4) implies that sup {|Lv(iξ, v)| : |ξ| = 1, |L(iξ, v)| ≤ δ} <∼ δ1−α.
Thus, (2.14) holds with µ = 1 − α and in this case, the velocity averaging holds with Sobolev-
regularity exponent

f(x) ∈ W s,r
loc (R

d
x), s < sα := (1 − θα)σ + θαk, θα :=

α/p′

α(1/p′ + 1/q) + 1
.

Remark 2.6. The statement of the averaging lemma 2.2 can be extended for f ∈ Lp(Rd
x × Rv)

and g ∈ Lqloc(Rd
x×Rv) in the full range of 1 < p <∞ and 1 ≤ q ≤ ∞. The dual claim to (2.2),

based on (L2, BMO) interpolation for 2 ≤ p <∞ reads

‖Mψf(x)‖Lp(Rd
x)

<∼ sup
ξ

|Ωm(ξ; δ)|
1
p · ‖f‖Lp(Rd

x×Rv), 2 ≤ p <∞.(2.16)

This yields the same W s,r-regularity as before

‖f‖W s,r
loc (Rd

x)
<∼ ‖g‖θLq

loc(Rd
x×Rv) · ‖f‖

1−θ
Wσ,p

loc (Rd
x×Rv)

, s ∈ (σ, (1 − θα)σ + θαk)(2.17)

with θ = θα(p, q) given by

θ :=
α/p

α(1/p− 1/q) + 2 − µ
,

1

r
:=

1 − θ

p
+
θ

q
, p := max(p, p′), q := max(q, q′).

2.3. An averaging lemma for general symbols. We now turn our attention to averages
involving general, not necessarily homogeneous symbols; as such the polar co-ordinate repre-
sentation ξ = |ξ|ξ′ is no longer useful and will be discarded. We focus on equations of the form
L(∇x, v)f(x, v) = ∂vg(x, v), corresponding to (η,N) = (0, 1) in (2.3).

Averaging Lemma 2.3. Let f ∈ W σ,p
loc (Rd

x × Rv), σ ≥ 0, 1 < p ≤ 2, solves the equation

L(∇x, v)f(x, v) = ∂vg(x, v), g ∈
{
Lq(Rd

x × Rv), 1 < q ≤ 2,
M(Rd

x × Rv), q = 1.(2.18)

Let L(iξ, ·) be the corresponding symbol of degree ≤ k with sufficiently smooth v-dependent
coefficients and assume it obeys the truncation property. Denote

ωL(J ; δ) := sup
ξ∈Rd:|ξ|∼J

∣∣ΩL(ξ; δ)
∣∣, ΩL(ξ; δ) :=

{
v : |L(iξ, v)| ≤ δ

}

and suppose the following non-degeneracy condition holds

∃α, β > 0 s.t. ωL(J ; δ) <∼

( δ

Jβ

)α
, ∀δ > 0, J >∼ 1.(2.19)

Moreover, assume that

∃λ ≥ 0 and µ ∈ [0, 1] s.t. sup
|ξ|∼J

sup
v∈ΩL(ξ;δ)

|Lv(iξ, v)| <∼ J
βλδµ.(2.20)

Then, for all bump functions φ ∈ C∞
0 (I), the average f(x) :=

∫
f(x, v)φ(v)dv belongs to the

Sobolev space W s,r
loc (Rd

x) for s ∈ (σ, sα,β) and the following estimate holds

∥∥∥
∫
f(x, v)φ(v) dv

∥∥∥
W s,r

loc (Rd
x)

<∼ ‖f(x, v)‖Wσ,p
loc (Rd

x×Rv) + ‖g(x, v)‖Lq
loc(Rd

x×Rv).(2.21)
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Here, sα,β := (1 − θα)σ + θαβ(2 − µ− λ) where θ ≡ θα and r are given by

θ :=
α/p′

α(1/p′ − 1/q′) + 2 − µ
,

1

r
:=

1 − θ

p
+
θ

q
, 0 < θ < 1.(2.22)

Remark 2.7. How does the last averaging lemma compare with the previous ones? We note
that since degLv(iξ, ·) ≤ k, then the additional assumption (2.20) always holds with µ = 0 and
βλ = k. Hence, the averaging lemma 2.3 with just the non-degeneracy condition (2.19) yields
the regularity f(x) ∈ W s,r

loc (Rd
x) of (the reduced) order s ∈ (σ, sα,β), where

sα,β := (1 − θα)σ + θα(2β − k), θα :=
α/p′

α(1/p′ − 1/q′) + 2
.(2.23)

Now, if in particular, L(iξ, ·) is homogeneous of degree k, then

ωL(ξ; δ) = ωL

(
ξ′;

δ

|ξ|k
)
, ξ′ :=

ξ

|ξ| ;

this shows that if the non-degeneracy condition (2.4) of averaging lemma 2.1 holds, ωL(J ; δ) ∼(
δ/Jk

)α
, then it implies (2.19) with β = k, and we recover the homogeneous averaging lemma

2.1 with (η,N) = (0, 1), namely, the averages f̄ gain regularity of order s < (1−θ)σ+θ(2β−k) =
(1 − θ)σ + θk. The only difference is that now the truncation property is assumed on the
unmodified symbol L(iξ, v) rather than the modified one L(iξ′, v).

As for the averaging lemma 2.2, we first note that in the generic case of an homogeneous
L(·, v), the additional assumption (2.20) holds with λ = α and µ = 1 − α,

sup
|ξ|∼J

sup
{v∈I: |L(iξ,v)|≤δ}

|Lv(iξ, v)| <∼ J
βαδ1−α.(2.24)

Indeed, all the homogeneous examples discussed in S3ections 3,4 and 5 below, employ the
averaging lemma 2.2 with these parameters which yield W s,r-regularity of order s < (1 −
θα)σ + θαβ,

f(x) ∈ W s,r
loc (R

d
x), s < (1 − θα)σ + θαβ, θα =

α/p′

α(1/p′ + 1/q) + 1
(2.25)

In the particular case of L being homogeneous of order k then β = k and we recover the
averaging lemma 2.2 (except that the truncation hypothesis is now assumed on the unmodified
symbol).

Proof. We begin by noting that we can safely replace the non-degeneracy condition (2.19) with
a slightly weaker one, namely

∃α, β > 0, and ε > 0 s.t. ωL(J ; δ) <∼

(δ1+ε

Jβ

)α
, ∀δ > 0, J >∼ 1,(2.26)

and still retain the same gained of regularity of order s < sα,β. This can be achieved by
replacing the values of α in (2.19) by α/(1 + ε) and then absorbing ε into a slightly smaller
order of regularity, (1−ε)sα,β dictated by θα/(1+ε). The extra ε-power of δ will be needed below
to insure simple summability, which probably could be eliminated by a more refined argument
involving Besov spaces, along the lines of [DLM91].

Next, we break up f into Littlewood-Paley pieces,

f = f0 +
∑

dyadic J ′s>∼1

fJ ,
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so that f̂J(ξ, v), the spatial Fourier transform of fJ(x, v), is supported for frequencies |ξ| ∼ J ,

and f̂0 has support in |ξ| <∼ 1. Since f0 is a smooth average of f at unit scales, the contribution
of f0 is easily seen to be acceptable. By giving up an ε in the index sα,β we may thus reduce
(2.21) to a single value of J . It thus suffices to show that

Js‖fJ‖Lr
loc(Rd)

<∼ J
σ‖fJ‖Lp

loc(Rd
x×Rv) + ‖g‖Lq

loc(Rd
x×Rv), fJ :=

∫

v

fJ(x, v)φ(v)dv,

for each J >∼ 1.
Fix J . Because of the local nature of Littlewood-Paley projections when J >∼ 1 we may

replace the localized Lp norms with global norms. Actually we may replace Lr by weak Lr

since we may pay another ε in the index sα,β to improve this. By the duality of weak Lr and
Lr

′,1 it thus suffices to show that

|〈fJ , χE〉| <∼ J
−s|E|1/r′(2.27)

for all sets E ⊂ Rd of finite measure, where we have normalized ‖fJ‖Lp(Rd
x×Rv)

<∼ J−σ and
‖g‖Lq

loc(Rd
x×Rv)

<∼ 1.

We now decompose the action in v-space of each of the Littlewood-Paley pieces (rather than a
decomposition f itself used in lemma 2.1),

fJ(x, v) =
∑

dyadic δ′s<∼Jk

ψ
(L(∇x, v)

δ

)
fJ(x, v), ψ

(L(∇x, v)

δ

)
:= F−1

x ψ
(L(iξ, v)

δ

)
Fx.

Here, ψ(z) is a bump function on C supported on the region |z| ∼ 1. It suffices to estimate

〈∫
ψ

(L(∇x, v)

δ

)
fJ(·, v)φ(v)dv, χE

〉
(2.28)

with a summable decay as the dyadic δ → 0, so that (2.27) holds.
By our assumption, L(iξ, v) satisfies the truncation property uniformly in v, hence by Lemma
2.1 we see that for all 1 < p ≤ 2,

∥∥∥
∫
ψ

(L(∇x, v)

δ

)
fJ(x, v)φ(v)dv

∥∥∥
Lp

loc(Rd
x)

<∼ ωL(J ; δ)1/p′‖fJ‖Lp
loc(Rd

x×Rv).(2.29)

From (2.29) and Hölder we may thus estimate (2.28) by

∣∣∣
〈 ∫

ψ
(L(∇x, v)

δ

)
fJ(·, v)φ(v)dv, χE

〉∣∣∣ <∼ J
−σωL(J ; δ)1/p′ |E|1/p′.(2.30)

On the other hand, thanks to equation (2.18) we can write

ψ
(L(∇x, v)

δ

)
fJ(x, v) = ψ̃

(L(∇x, v)

δ

)1

δ

∂

∂v
gJ(x, v)

where ψ̃(z) := ψ(z)/z and the gJ ’s are the corresponding Littlewood-Paley dyadic pieces of g.
We thus have

∫
ψ

(L(∇x, v)

δ

)
fJ(x, v)φ(v)dv =

1

δ

∫
ψ̃

(L(∇x, v)

δ

) ∂

∂v
gJ(x, v)φ(v)dv.(2.31)
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We now integrate by parts to move the ∂/∂v derivative somewhere else. We will assume that

the derivative hits ψ̃(L(∇x, v)/δ), as the case when the derivative hits the bump function φ(v)
is much better. We are thus led to estimate

1

δ2

∣∣∣
〈 ∫

ψ̃z

(L(∇x, v)

δ

)
Lv(∇x, v)gJ(x, v)φ(v)dv, χE

〉∣∣∣.(2.32)

Since gJ is localized to frequencies ∼ J , then by (2.20), the multiplier Lv(iξ, v) acts like a

constant of order O(Jβλδµ). Also, ψ̃z is a bump function much like ψ. Thus we may modify
(2.29) — with p replaced by q (assuming that q > 1 and using the modified argument for the

case q = 1 as before), ψ replaced by ψ̃z, and fJ replaced by Lv(∇x, v)gJ , to estimate (2.31) by
∣∣∣
〈 ∫

ψ
(L(∇x, v)

δ

)
fJ(·, v)φ(v)dv, χE

〉∣∣∣ <∼ δ
−(2−µ)JβλωL(J ; δ)1/q′ |E|1/q′.(2.33)

Interpolating this bound with (2.30), we may bound (2.28) by

δ−θ(2−µ)J (1−θ)(−σ)+θβλωL(J ; δ)1/r′|E|1/r′.
The parameterization in (2.22) dictates α/r′ = θ(2−µ). Finally, we put the extra ε power into

use: by (2.26), ωL(J ; δ)1/r′ <∼
(
δ1+εJ−β)θ(2−µ)

and hence the last quantity is bounded by

δθ(2−µ)εJ−sα,β |E|1/r′, sα,β = (1 − θ)σ − θβ(2 − µ− λ).

Summing in δ and using the hypothesis that s < sα,β we obtain (2.27).

2.4. Velocity averaging for first and second order symbols. To apply the velocity aver-
aging 2.3 we need to find out which multipliers m(ξ) have the truncation property. Fortunately,
there are a large classes of such multipliers.

First of all, it is clear that the multipliers m(ξ) = ξ · e1 and m(ξ) = |ξ|2 have the truncation
property, as in these cases the Fourier multipliers are just convolutions with finite measures.
Now, observe that if m(ξ) has the truncation property, then so does m(L(ξ)) for any invertible
linear transformation L on Rd, with a bound which is uniform in L. This is because the Lp

multiplier class is invariant under linear transformations.
Because of this, we see that the multipliers

m1(ξ) = a(v) · iξ
and

m2(ξ) = 〈b(v)ξ, ξ〉
have the truncation property uniformly in v, where a(v) are arbitrary real coefficients, and b(v)
is an arbitrary elliptic bilinear form with real coefficients.

From the Hörmander-Mikhlin or Marcinkeiwicz multiplier theorems and the linear transfor-
mation argument one can also show that m1(ξ

′) has the truncation property uniformly in v.
These arguments go back to the discussion of [DLM91]. The situation with m2(ξ

′) is less clear,
but fortunately we will not need to verify that these second order modified multipliers obey
the truncation property since our averaging lemmata also work with a truncation property
hypothesis on the unmodified multiplier.

Now we observe that if m1(ξ), m2(ξ) are real multipliers with the truncation property, then
the complex multiplier m1(ξ)+ im2(ξ) also has the truncation property. The basic observation
is that one can use Fourier series to write any symbol of the form

ψ
(m1(ξ) + im2(ξ)

δ

)
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as ∑

j,k∈Z
ψ̂(j, k)ψ̃j

(m1(ξ)

δ

)
ψ̃k

(m2(ξ)

δ

)

where ψ̃j(x) := e2πijxψ̃ and ψ̃ is some bump function which equals 1 on the one-dimensional

projections of the support of ψ. Since the C` norm of ψ̃j grows polynomially in j and ψ̂(j, k)
decays rapidly in j, k (if ψ is sufficiently smooth), we are done since the product of two Lp

multipliers is still an Lp multiplier.

3. Nonlinear hyperbolic conservation laws

Having developed our averaging lemmata, we now present some applications to nonlinear
PDE. We begin with the study (real-valued) solutions ρ(t, x) = ρ(t, x1, . . . , xd) ∈ L∞((0,∞)×
Rd
x) of multidimensional scalar conservation laws

∂

∂t
ρ(t, x) +

d∑

j=1

∂

∂xj
Aj(ρ(t, x)) = 0, in D′((0,∞) × Rd

x).(3.1)

We abbreviate (3.1) as ρt + ∇x · A(ρ) = 0 where A is the vector of C2,ε-spatial fluxes, A :=
(A1, A2, . . . , Ad).
Let χγ(v) denote the velocity indicator function

χγ(v) =





1 if 0 < v ≤ γ
−1 if γ ≤ v < 0
0 otherwise.

We say that ρ(t, x) is a kinetic solution of the conservation law (3.1) if the corresponding
distribution function, χρ(t,x)(v), satisfies the transport equation

∂tχρ(t,x)(v) + a(v) · ∇xχρ(t,x)(v) = ∂vm(t, x, v) in D′((0,∞) × Rd
x × Rv),(3.2)

for some nonnegative measure, m(t, x, v) ∈ M+((0,∞) × Rd
x × Rv). Here, a(v) is the vector

of transport velocities, a(v) := (a1(v), . . . , ad(v)) where aj(·) := A′
j(·), j = 1, 2, . . . d. The

regularizing effect associated with the proper notion of nonlinearity of the conservation law (3.1)
was explored in [LPT94a] through the averaging properties of an underlying kinetic formulation.
For completeness, we include here a brief description which will serve our discussion on nonlinear
parabolic and elliptic equations in the next sections and we refer to [LPT94a] for a complete
discussion.

The starting point are the entropy inequalities associated with (3.1),

∂tη(ρ(t, x)) + ∇x · Aη(ρ(t, x)) ≤ 0 in D′((0,∞) × Rd
x).

Here, η is an arbitrary entropy function (a convex function from R to R) and Aη := (Aη1, . . . , A
η
d)

is the corresponding vector of entropy fluxes, Aηj (ρ) :=
∫ ρ
η′(s)A′

j(s)ds, j = 1, 2, . . . d. A
function ρ ∈ L∞ is an entropy solution if it satisfies the entropy inequalities for all pairs
(η,Aη) induced by convex entropies η. Entropy solutions are precisely those solutions which are
realizable as vanishing viscosity limit solutions and are uniquely determined by their L∞ ∩ L1-
initial data, ρ0(x), prescribed at t = 0, e.g., [Lax73]. A decisive role is played by the one-
parameter family of Kružkov entropy pairs, (η(ρ; v),Aη(ρ; v)), parameterized by v ∈ R,

η(ρ; v) := |ρ− v|, Aηj (ρ; v) := sgn(ρ− v)(Aj(ρ) − Aj(v)).



VELOCITY AVERAGING AND REGULARITY OF QUASILINEAR PDES 15

Kružkov entropy pairs lead to a complete L1-theory of existence, uniqueness and stability of
first-order quasilinear conservation laws, [Kr70]. We turn to the kinetic formulation. We define
the distribution, m(t, x, v) = mρ(t,x)(v) by the formula

m(t, x, v) := −
[
∂t
η(ρ; v) − η(0; v)

2
+ ∇x ·

(Aη(ρ; v) − Aη(0; v)

2

)]
.(3.3)

The entropy inequalities tell us that the distribution m = mρ is in fact a nonnegative measure,
m(t, x, v) ∈ M+((0,∞) × Rd

x × Rv). Next, we differentiate (3.3) with respect to v: a straight-
forward computation yields that χρ(t,x)(v) satisfies the kinetic transport equation (3.2). This
reveals the interplay between Kružkov entropy inequalities and the underlying kinetic formu-
lation; for nonlinear conservation laws, kinetic solutions coincide with the entropy solutions,
[PT91, LPT94a]. Observe that by velocity averaging we recover the macroscopic quantities
associated with the entropy solution ρ,∫

v

χρ(v)φ(v)dv = Φ(ρ)

where Φ(ρ) :=
∫ ρ

s=0
φ(s)ds is the primitive of φ. In particular one can recover ρ itself by setting

φ(v) = 1[−M,M ](v), M = ‖ρ‖L∞.
We now use the averaging lemma (2.2) to study the regularity of ρ. To this end we first

extend (3.2) over the full Rt×Rd
x-space, using a C∞

0 (0,∞)-cut-off function, ψ ≡ 1 for t ≥ ε, so
that f(t, x, v) := χρ(t,x)(v)ψ(t) and g(t, x, v) := mρ(t, x, v)ψ(t) + χρ(t,x)(v)∂tψ(t) satisfy

∂tf(t, x, v) + a(v) · ∇xf(t, x, v) = ∂vg(t, x, v) in D′(Rt × Rd
x × Rv), g ∈ M(Rt × Rd

x × Rv).

Set I := [inf ρ0, sup ρ0] and assume that the first-order symbol is non-degenerate, (2.4), (2.14),
namely,

∃α ∈ (0, 1) s.t. sup
τ2+|ξ|2=1

|Ωa(ξ; δ)| <∼ δ
α, Ωa(ξ; δ) :=

{
v ∈ I : |τ + a(v) · ξ| ≤ δ

}
,(3.4)

and

∃µ ∈ [0, 1] s.t. sup
|ξ|=1

sup
Ωa(ξ;δ)

|a′(v) · ξ| <∼ δ
µ.(3.5)

We apply the averaging lemma 2.2 for first-order symbols, k = 1, with q = 1, p = 2 and
σ = 0, to find that f(x) and hence ρ(x) belong to W s,r

loc (Rt × Rd
x),

ρ(t, x) ∈ W s,r
loc ((ε,∞) × Rd

x), s < θα :=
α

α+ 4 − 2µ
, r :=

α + 4 − 2µ

α + 2 − µ
.

At this stage, we invoke the monotonicity property of entropy solutions, which implies that
for s < 1, ‖ρ(t, ·)‖W s,1

loc (Rd
x) is nonincreasing, and we deduce that ρ(t, ·) ∈ W s,1(Rd

x) for t > ε.

We conclude that the entropy solution operator associated with the nonlinear conservation law
(3.1),(3.4), ρ0(·) 7→ ρ(t, ·), has a regularizing effect, mapping L∞(Rd

x) into W s,1
loc (Rd

x),

∀t ≥ ε > 0 : ρ(t, ·) ∈ W s,1
loc (R

d
x), s < s1, s1 := θα =

α

α + 4 − 2µ
.

Next, we use the bootstrap argument of [LPT94a, §3] to deduce an improved regularizing
effect. The W s,1

loc (Rt×Rd
x)-regularity of ρ(t, x)ψ(t) implies that f(t, x, v) = χρ(t,x)(v)ψ(t) belongs

to L1(W s,1(Rt × Rd
x),Rv); moreover, since ∂vχρ(v) is a bounded measure, f ∈ L1(W s,1(Rt ×

Rd
x),Rv) ∩ L1(Rt × Rd

x,W
s,1(Rv)) and hence

f ∈ W s,1
loc (Rt × Rd

x × Rv), ∀s < s1.
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Interpolation with the obvious L∞-bound of f then yields that f ∈ W s,2
loc (Rt × Rd

x × Rv) for all
s < s1/2. Therefore, the averaging lemma 2.2 applies to f = χρ(t,x)(v)ψ(t) with q = 1, p = 2 and

σ = s1/2, implying that ρ(t, ·) has improved W s,1
loc -regularity of order s < s2 = (1−θα)s1/2+θα.

Reiterating this argument yields the fixed point sk ↑ s∞ = 2θα/(1 + θα) and we conclude with
a regularizing effect

∀t ≥ ε > 0 : ρ0 ∈ L∞ ∩ L1(Rd
x) 7→ ρ(t, ·) ∈ W s,1

loc (R
d
x), s <

α

α + 2 − µ
.

As indicated earlier in remark 2.7, in the generic case, µ = 1 − α,

sup
|ξ|=1

sup
{v∈I:|τ+a(v)·ξ|≤δ}

|a′(v) · ξ| <∼ δ
1−α,(3.6)

which yields W s,1-regularizing effect of order s < α/(2α + 1). This improves the previous
regularity result [LPT94a, Theorem 4] of order s < α/(α + 2), corresponding to µ = 0. We
can extend the last statement for general Lploc initial data. Recall that the entropy solution
operator associated with (3.1) is L1-contractive. We now invoke a general nonlinear inter-
polation argument of J.-L. Lions, e.g., [Ta00, Interpolation Theory, Lecture 8]; namely, if a
possibly nonlinear T is Lipschitz on X with a Lipschitz constant LX and maps boundedly
Y1 7→ Y2 with a bound BY , then one verifies that the corresponding K-functionals satisfy
K(Tx, t;X, Y2) ≤ LXK(x, tBY /LX ;X, Y1), and hence T maps [X, Y1]θ,q 7→ [X, Y2]θ,q. Conse-

quently, the entropy solution operator maps [L1, L∞]θ,q 7→ [L1,W s,1
loc ]θ,q, 0 < θ < 1 < q, and we

conclude

Corollary 3.1. Consider the nonlinear conservation law (3.1) subject to Lp ∩ L1-initial data,
ρ(0, x) = ρ0(x). Assume the non-degeneracy condition of order α, (3.4), (3.6) holds over
arbitrary finite intervals I. Then ρ(t, x) gains a regularity of order s/p′,

∀t ≥ ε > 0 : ρ0 ∈ Lp ∩ L1(Rd
x) 7→ ρ(t, ·) ∈ W s,1

loc (R
d
x), s <

α

(2α + 1)p′
.

The study of regularizing effects in one- and two-dimensional nonlinear conservation laws has
been studied by a variety of different approaches; an incomplete list of references includes
[Ol63],[Ta79],[Ta87],[EE93],[TRB05].

We close this section with three examples. Let ` ≥ 1 and consider the one-dimensional
conservation law

∂

∂t
ρ(t, x) +

∂

∂x

{ 1

`+ 1
ρ`+1(t, x)

}
= 0, ρ0 ∈ [−M,M ].(3.7)

It satisfies the non-degeneracy condition (3.4) with α = 1/`, hence ρ(t, ·)|t>ε ∈ W s,1
loc with

s < α/(2α + 1) = 1/(` + 2). It is well-known, however, that the entropy solution operator of
the inviscid Burgers’ equation corresponding to ` = 1, maps L∞ 7→ BV , [Ol63]. This shows
that the regularizing effect of order α/(2α + 1) stated in corollary 3.1 is not sharp (although
the averaging argument is! consult [DLW05] following [JP02]). Accordingly, it was conjectured
in [LPT94a] that (3.4) yields a regularizing effect of order α.

Next, let `,m ≥ 1 and consider the two-dimensional conservation law

∂

∂t
ρ(t, x) +

∂

∂x1

{ 1

` + 1
ρ`+1(t, x)

}
+

∂

∂x2

{ 1

m+ 1
ρm+1(t, x)

}
= 0, ρ0 ∈ [−M,M ].
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If ` 6= m then (3.4) is satisfied with α = min{1
`
, 1
m
} and we conclude ρ(t ≥ ε, ·) ∈ W s

loc(L
1) with

s < min{ 1
`+2

, 1
m+2

}. If ` = m, however, then there is no regularizing effect since τ ′+v`ξ′1+v
mξ′2 ≡

0 for τ = 0, ξ1 + ξ2 = 0; indeed, ρ0(x−y) are steady solutions which allow oscillations to persist
along x− y = const. Other cases can be worked out based on their polynomial degeneracy; for
example,

∂

∂t
ρ(t, x) +

∂

∂x1
sin(ρ(t, x)) +

∂

∂x2

{1

3
ρ3(t, x)

}
= 0, ρ0 ∈ [−M,M ],

has a non-degeneracy of order α = 1/4, yielding W s,1
loc -regularity of order s < 1/6.

4. Nonlinear degenerate parabolic equations

We are concerned with second-order, possibly degenerate parabolic equations in conservative
form

∂

∂t
ρ(t, x) +

d∑

j=1

∂

∂xj
Aj(ρ(t, x)) −

d∑

j,k=1

∂2

∂xj∂xk
Bjk(ρ(t, x)) = 0, in D′((0,∞) × Rd

x).(4.1)

We abbreviate, ρt+∇x ·A(ρ)+trace
(
∇x⊗∇x B(ρ)

)
= 0 where B is the matrix B :=

{
Bjk

}d
j,k=1

.

By degenerate parabolicity we mean that the matrix B′(·) is non-negative,
〈
B′(·)ξ, ξ

〉
≥ 0, ∀ξ ∈

Rd. Our starting point are the entropy inequalities associated with (4.1), such that for all convex
η’s,

∂tη(ρ(t, x)) + ∇x ·Aη(ρ(t, x)) − trace
(
∇x ⊗∇x Bη(ρ(t, x))

)
≤ 0 in D′((0,∞) × Rd

x).(4.2)

Here, Aη is the same vector of hyperbolic entropy fluxes we had before, Aη = (Aη1, . . . , A
η
d) and

Bη is the matrix of parabolic entropy fluxes, Bη := (Bη
jk)

d
j,k=1, B

η
jk(ρ) :=

∫ ρ
η′(s)B′

jk(s)ds. We
turn to the kinetic formulation. Utilizing the Kružkov entropies, η(ρ; v) := |ρ − v|, we define
the distribution, m(t, x, v) = mρ(t,x)(v),

m(t, x, v) := −
[
∂t
η(ρ; v) − η(0; v)

2
+ ∇x ·

(Aη(ρ; v) − Aη(0; v)

2

)]
+

+ trace
(
∇x ⊗∇x

Bη(ρ; v) − Bη(0; v)

2

)
.(4.3)

The entropy inequalities tell us that m(t, x, v) ∈ M+((0,∞) × Rd
x × Rv) and differentiation

with respect to v yields the kinetic formulation,

∂tχρ(t,x)(v) + a(v) · ∇xχρ(t,x)(v) −∇>
x · b(v)∇xχρ(t,x)(v) = ∂vm(t, x, v),(4.4)

for some nonnegative m ∈ M+ which measures entropy+dissipation production. Here, a
is the same vector of velocities we had before, a = A′, and b is the non-negative diffusion
matrix, b := B′ ≥ 0. The representation η(ρ) − η(0) =

∫
η′(s)χρ(s)ds shows that the kinetic

formulation (4.4) is in fact the equivalent dual statement of the entropy inequalities (4.2). But
neither of these statements settles the question of uniqueness, except for certain special cases,
such as the isotropic diffusion, Bjk(ρ) = B(ρ)δjk ≥ 0, e.g., [Ca99], or special cases with mild
singularities, e.g., a porous- media type one-point degeneracy, [DiB93, Ta97]. The extension
of Kružkov theory to the present context of general parabolic equations with possibly non-
isotropic diffusion was completed only recently in [CP03], after the pioneering work [VH69].
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Observe that the entropy production measure, m, consists of contributions from the hyperbolic
entropy dissipation and the parabolic dissipation of the equation, m = mA +mB. The solutions
sought by Chen and Perthame in [CP03], ρ ∈ L∞, require that their corresponding distribution
function χρ satisfies (4.4) with a restricted form of parabolic defect measure mB: the restriction
imposed onmB reflects a certain renormalization property of the mixed derivatives of ρ (or more

precisely, the primitive of
√

b(ρ)). Accordingly, we can refer to these Chen-Perthame solutions
as renormalized solutions with a kinetic formulation (4.4). These renormalized kinetic solutions
admit an equivalent interpretation as entropy solutions, [CP03] and as dissipative solutions,
[PS05]. A general L1-theory of existence, uniqueness and stability can be found in [CK04]. For
a recent overview with a more complete list of references on such convection-diffusion equations
in divergence form we refer to [Ch03]. The regularizing effect of such equations, however, is less
understood. In [LPT94a, §5] we used the kinetic formulation (4.4) to prove that the solution
operator, ρ0 7→ ρ(t, ·) is relatively compact under a generic non-degeneracy condition

sup
|ξ|=1

|ΩL(ξ; 0)| = 0, ΩL(ξ; 0) := {v : τ + a(v) · ξ = 0, 〈b(v)ξ, ξ〉 = 0} .

A general compactness result in this direction can be can be found [Ge90]. We turn to quantify
the regularizing effect associated with such kinetic solutions. We emphasize that our regularity
results are based on the ‘generic’ kinetic formulation (4.4), but otherwise, they are independent
of the additional information on the renormalized Chen-Perthame solutions encoded in their
entropy production measure m. The extra restrictions of the latter will likely to yield even
better regularity results than those stated below. We divide our discussion into two stages,
in order to highlight different aspects of degenerate diffusion, in Section 4.1, and the coupling
with nonlinear convection, in Section 4.2.

4.1. Non-isotropic degenerate diffusion. We consider the parabolic equation

∂

∂t
ρ(t, x) −

d∑

j,k=1

∂2

∂xj∂xk
Bjk(ρ(t, x)) = 0, in D′((0,∞) × Rd

x).(4.5)

Here, we ignore the hyperbolic part and focus on the effect of non-isotropic diffusion. The
corresponding kinetic formulation (4.4) extended to the full Rt × Rd

x × Rv reads

∂tf(t, x, v) −∇>
x · b(v)∇xf(t, x, v) = ∂vg(t, x, v), f := χρψ(t), g ∈ M+(Rt × Rd

x × Rv).

Set I := [inf ρ0, sup ρ0]. The corresponding symbol is L(τ, iξ, v) = iτ + 〈b(v)ξ, ξ〉 and it suffices
to make the non-degeneracy assumption (2.4), on the second-order homogeneous part of the
symbol L(0, iξ, v) = 〈b(v)ξ, ξ〉. We make

∃α ∈ (0, 1) s.t. sup
|ξ|=1

∣∣Ωb(ξ; δ)
∣∣ <∼ δ

α, Ωb(ξ; δ) :=
{
v ∈ I : 0 ≤ 〈b(v)ξ, ξ〉 ≤ δ

}
.(4.6)

and

∃µ ∈ [0, 1] s.t. sup
|ξ|=1

sup
Ωb(ξ;δ)

∣∣〈b′(v)ξ, ξ〉
∣∣ <∼ δ

µ(4.7)

We apply the averaging result 2.3 with q = 1, p = 2, σ = 0 and k = 2, to find that f(t, x) and
hence ρ(t, x) belong to W s,r

loc (Rt × Rd
x),

ρ(t, ·) ∈ W s,r
loc ((ε,∞) × Rd

x), s < 2θα, θα :=
α

α+ 4 − 2µ
, r :=

α+ 4 − 2µ

α + 2 − µ
.



VELOCITY AVERAGING AND REGULARITY OF QUASILINEAR PDES 19

We follow the hyperbolic arguments. The kinetic solution operator associated with (4.1) is
L1-contractive, hence ‖ρ(t, ·)‖W s,1

loc (Rd
x) is nonincreasing and we conclude that ∀t > ε, ρ(t, ·) has

W s,1
loc -regularity of order s < s1, s1 := 2θα = 2α/(α + 4 − 2µ). We then bootstrap. Since

χρ(v)ψ(t) ∈ W s,2
loc (Rt × Rd

x × Rv) for all s < s1/2, we can apply the averaging lemma 2.1

with σ = s1/2 leading to W s,1
loc -regularity of order s2 := (1 − θα)s1/2 + 2θα with fixed point

sk ↑ s∞ = 4θα/(1 + θα),

∀t ≥ ε > 0 : ρ0 ∈ L∞ ∩ L1(Rd
x) 7→ ρ(t, ·) ∈ W s,1

loc (R
d
x), s <

2α

α + 2 − µ
.(4.8)

We distinguish between two different types of degenerate parabolicity, summarized in the
following two corollaries.

Corollary 4.1. [Degenerate parabolicity I. The case of a full rank] Consider the degenerate
parabolic equation (4.1) subject to L∞ ∩ L1-initial data, ρ(0, x) = ρ0. Let λ1(v) ≥ λ2(v) ≥
. . . λd(v) ≥ 0 be the eigenvalues of b(v) and assume that λd(v) ≡/ 0 over I = [inf ρ0, sup ρ0].
Then,

〈
b(v)ξ, ξ

〉
≥ λd(v)|ξ|2 and ρ(t, x) has a regularizing of order s < 2α/(α+ 2 − µ)p′, i.e.,

(4.8) holds with α and µ dictated by λd(v) ≡ λd(b(v)),

|Ωλ(δ)| <∼ δ
α and sup

|ξ|=1

sup
v∈Ωλ(δ)

|〈b′(v)ξ, ξ〉| <∼ δ
µ, Ωλ(δ) :=

{
v ∈ I : 0 ≤ λd(v) ≤ δ

}
.

Corollary 4.1 applies to the special case of isotropic diffusion,

∂

∂t
ρ(t, x) − ∆B(ρ(t, x)) = 0, B′(v) ≥ 0,(4.9)

subject to L∞ ∩ L1-initial data, ρ(0, ·) = ρ0. If b(·) := B′(v) is degenerate of order α in the
sense that,∣∣Ωb(δ)

∣∣ <∼ δ
α, and sup

v∈Ωb(δ)

|b′(v)| <∼ δ
1−α, Ωb(δ) :=

{
v ∈ I : 0 ≤ b(v) ≤ δ

}
,

then corollary 4.1 implies ∀t ≥ ε : ρ(t, ·) ∈ W s,1
loc , s < 2α/(2α + 1). For Lp ∩ L1-data ρ0, the

corresponding solution ρ(t, ·) gains W s,1
loc -regularity of order s < 2α/(2α + 1)p′ and we conjec-

ture, in analogy with the hyperbolic case, that the non-degeneracy (4.6) yields an improved
regularizing effect of order 2α/p′. Existence, uniqueness and regularizing effects of the isotropic
equation (4.9) were studied earlier in [BC79, BC81a, BC81b]. The prototype is provided by
the porous media equation,

∂

∂t
ρ(t, x) − ∆

{ 1

n + 1
|ρn(t, x)|ρ(t, x)

}
= 0, ρ(0, x) = ρ0(x) ≥ 0, ρ0 ∈ L∞.(4.10)

The velocity averaging yields W s,1-regularity of order 2/(n+ 2) and, as in the hyperbolic case,
it does not recover the optimal Hölder continuity in this case, e.g. [DiB93, Ta96]. In fact,
the kinetic arguments do not yield continuity. Instead, our main contribution here is to the
non-isotropic case where we conjecture the same gain of regularity driven by λd(b(v)), as the
isotropic regularity driven by b(v).

We continue with the more subtle case where b(·) does not have a full-rank, so that

∃`, 1 ≤ ` < d : λ1(v) ≥ . . . λ`(v) ≥ 0, λ`+1(v) ≡ . . . ≡ λd(v) ≡ 0

Despite this stronger degeneracy, there is still some regularity that can be ‘saved’. To demon-
strate our point, we consider the 2D case.
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Corollary 4.2. [Degenerate parabolicity II. The case of a partial rank] We consider the 2D
degenerate equation

∂

∂t
ρ(t, x) −

{ ∂2

∂x2
1

B11(ρ(t, x)) +
∂2

∂x1∂x2

B12(ρ(t, x)) +
∂2

∂x2
2

B22(ρ(t, x))
}

= 0.(4.11)

subject to L∞ ∩L1-initial data, ρ(0, x) = ρ0. Assume strong degeneracy, b212(v) ≡ 4b11(v)b22(v),

so that λ2(b(v)) ≡ 0, ∀v ∈ I = [inf ρ0, sup0]. In this case, 〈b(v)ξ, ξ〉 =
(√

b11(v)ξ1+
√
b22(v)ξ2

)2

and ρ(t, ·) admits a W s,1
loc -regularity of of order s < 2α/(α+2−µ) which is dictated by the non-

degeneracy,

sup
|ξ|=1

∣∣∣Ωb(ξ; δ)
∣∣∣ <∼ δ

α, Ωb(ξ; δ) :=
{
v ∈ I :

∣∣√b11(v)ξ1 +
√
b22(v)ξ2

∣∣2 ≤ δ
}
,(4.12)

and

sup
|ξ|=1

sup
v∈Ωb(ξ;δ)

∣∣∣ b
′
11(v)√
b11(v)

ξ1 +
b′22(v)√
b22(v)

ξ2

∣∣∣ <∼ δ
µ−1/2.(4.13)

We distinguish between two extreme scenarios.
(i) If |b11(v)| � |b22(v)| ∀v ∈ I, then the regularizing effect (4.8) holds with (α, µ) dictated

by b22(v),
∣∣Ωb22(δ)

∣∣ <∼ δ
α and sup

v∈Ωb22
(δ)

∣∣b′22(v)
∣∣ <∼ δ

µ, Ωb22(δ) :=
{
v ∈ I : 0 ≤ b22(v) ≤ δ

}
.

(ii) If b11(v) ≡ b22(v) ∀v ∈ I, then there is no regularizing effect since the symbol
(√

b11(v)ξ1+

√
b22(v)ξ2

)2

vanishes for all ξ1 ± ξ2 = 0 (so that (4.12) is fulfilled with α = 0). Indeed, the

equation (4.11), with b11(v) = b22(v) =: B′(v), takes the form

∂

∂t
ρ(t, x) −

{ ∂2

∂x2
1

± 2
∂2

∂x1∂x2

+
∂2

∂x2
2

}
B(ρ(t, x)) = 0,

and we observe that ρ0(x∓ y) are steady solutions which allow for oscillations to persist along
x∓ y = const.

4.2. Convection-diffusion equations. We begin with the one-dimensional case

∂

∂t
ρ(t, x) +

∂

∂x
A(ρ(t, x)) − ∂2

∂x2
B(ρ(t, x)) = 0.(4.14)

We consider the prototype example of high-order Burgers’ type nonlinearity, a(v) := v`, ` ≥ 1
combined with porous medium diffusion b(v) = |v|n, n ≥ 1. The corresponding symbol is given
by L((τ, iξ), v) = iτ+v`iξ+|v|nξ2. We study the regularity of this convection-diffusion equation
using the averaging lemma 2.3, which employs the size of the set

ΩL
(
J ; δ

)
:=

{
v

∣∣∣ J |τ + v`ξ| + J2|v|nξ2 ≤ δ
}
, τ 2 + ξ2 = 1, J >∼ 1, δ <∼ 1.

Comparing diffusion vs. nonlinear convection effects, we can distinguish here between three
different cases. Clearly, ΩL(J ; δ) ⊂ Ωb := {v : |v|n ≤ δ/J2}, hence ωL(J ; δ) <∼ (δ/J2)1/n and
(2.19) holds with αb = 1/n and βb = 2. We shall use this bound whenever n ≤ `, which is the
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case dominated by the parabolic part of (4.14). Indeed, in this case we have (δ/J)1/` >∼ (δ/J2)1/n

which in turn yields

sup
v∈ΩL(J ;δ)

|Lv
(
(τ, iξ), v

)
| <∼ sup

v∈Ωb

(
J |v|`−1 + J2|v|n−1

)
<∼ J

2/nδ1−1/n.

This shows that (2.20) holds with (λb, µb) = (αb, 1 − αb) and velocity averaging implies W s,1
loc -

regularizing effect with Sobolev exponent s < βbαb/(3αb + 2),

s < sn =
2

2n+ 3
.

We also have, ΩL(J ; δ) ⊂ Ωa := {v : |v|` <∼ δ/J}, so that ωL(J ; δ) <∼ (δ/J)1/`, i.e., (2.19) holds
with αa = 1/` and βa = 1. We shall use this bound whenever n ≥ 2`, which is the case driven
by the hyperbolic part (4.14). In this case, (δ/J)1/` <∼ (δ/J2)1/n, hence

sup
v∈ΩL(J ;δ)

|Lv
(
(τ, iξ), v

)
| <∼ sup

v∈Ωa

(
J |v|`−1 + J2|v|n−1

)
<∼ J

1/`δ1−1/`,

implying that (2.20) is fulfilled with (λa, µa) = (αa, 1 − αa). The corresponding Sobolev expo-
nent, s < βaαa/(3αa + 2), is then given by,

s < s` :=
1

2`+ 3
.

Finally, for intermediate n’s, ` < n < 2`, we interpolate the previous two ωL-bounds (which
are valid for all n’s),

ωL(J ; δ) <∼ (δ/J)(1−ζ)/`(δ/J2)ζ/n,

for some ζ ∈ [0, 1], which we choose as ζ := (n/`)−1, so that (2.19) holds with α = (1− ζ)/`+
ζ/n, βα = (1 − ζ)/` + 2ζ/n and (2.20) holds with (λ, µ) = (α, 1 − α). This then yields the
Sobolev-regularity exponent, s < βα/(3α+ 2),

s <
n+ (2`− n)ζ

3n+ 3(`− n)ζ + 2n`
, ζ := (n/`) − 1, ` < n < 2`.

An additional bootstrap argument improves this Sobolev exponent, s < βα/(2α + 1), and we
summarize the three different cases in

Corollary 4.3. The convection-diffusion equation

∂

∂t
ρ(t, x) +

∂

∂x

{ 1

`+ 1
ρ`+1(t, x)

}
− ∂2

∂x2

{ 1

n+ 1
|ρn(t, x)|ρ(t, x)

}
= 0, ρ0 ∈ [−M,M ],(4.15)

has a regularizing effect, ρ0 ∈ L∞(Rx) 7→ ρ(t > ε, ·) ∈ W s,1
loc (Rx), of order s < s`,n given by

s`,n =
n+ (2`− n)ζ`,n

2n+ 2(`− n)ζ`,n + n`
, ζ`,n :=





0 n ≤ `
(n/`) − 1 ` < n < 2`
1 n ≥ 2`

We note that when n ≤ `, then Ωb ⊂ Ωa and (4.15) is dominated by degenerate diffusion with a
regularizing effect of order s`,n = sn = 2/(n+2). Thus, we recover the same order of regularity
we met with the ‘purely diffusive’ porous medium equation (4.10). If n ≥ 2`, however, then
Ωa ⊂ Ωb and it is the hyperbolic part which dominates diffusion, driving the overall regularizing
effect of (4.15) with order s`,n = s` = 1/(`+2); we recover regularity with the same order which
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we met with the ‘purely convective’ hyper-Burgers’ equation (3.7). Finally, in the intermediate
‘mixed cases’, ` < n < 2`, we find a regularity of a (non-optimal) order

s`,n =
n` + (2`− n)(n− `)

2n`− 2(n− `)2 + n`2
, ` < n < 2`.

We turn to the multi-dimensional case (4.1). The regularizing effect is determined by the
size of the set

Ω
(
J ; δ) =

{
v

∣∣∣ J |τ + a(v) · ξ| + J2〈b(v)ξ, ξ〉 ≤ δ
}
, τ 2 + |ξ|2 = 1, J >∼ 1, δ <∼ 1.

Assume that the degenerate parabolic part of the equation has a full-rank, so that the smallest
eigenvalue of b(v), λ(v) ≡ λd(b(v)) satisfies

|Ωb(δ)| <∼ δ
αb and sup

|ξ|=1

sup
v∈Ωb(δ)

|〈b′(v)ξ, ξ〉| <∼ δ
1−αb , Ωb(δ) :=

{
v

∣∣∣ 0 ≤ λd(b(v)) ≤ δ
}
.

(4.16)

In this case, ωL(J ; δ) <∼ (δ/J2)αb which yields a gain of W s,1
loc -regularity of order s < 2αb/(2αb +

1). If in addition, the hyperbolic part of the equation has a non-degeneracy of order αa, namely

sup
τ2+|ξ|2=1

∣∣Ωa

(
(τ, ξ), δ

)∣∣ <∼ δ
αa and sup

|ξ|=1

sup
v∈Ωa(δ)

|a′(v) · ξ| <∼ δ
1−αa,

where Ωa

(
(τ, ξ); δ

)
:=

{
v : |τ + a(v) · ξ| ≤ δ

}
, then we can argue along the lines of corollary

4.3 to conclude that there is an overall W s,1
loc -regularity of order dictated by the relative size of

2αb/(2αb + 1) and αa/(2αa + 1). As an example, we have the following.

Corollary 4.4. Consider the two-dimensional convection-diffusion equation

∂

∂t
ρ(t, x) +

∂

∂x1

{ 1

`+ 1
ρ`+1(t, x)

}
+

∂

∂x2

{ 1

m + 1
ρm+1(t, x)

}
−

2∑

j,k=1

∂2

∂xj∂xk
Bjk(ρ(t, x)) = 0,

(4.17)

with non-degenerate diffusion, B′(v) >∼ |v|n. Then, its renormalized kinetic solution admits a
W s,1
loc -regularizing effect, ρ0 ∈ L∞ 7→ ρ(t, ·) ∈ W s,1

loc (R2
x), of order

s <





s`,m := min
( 1

`+ 2
,

1

m + 2

)
, if n ≥ 2 max(`,m) and ` 6= m,

sn :=
2

n + 2
, if n ≤ min(`,m) or ` = m,

s`,m,n ∈ [s`,m, sn], if min(`,m) < n < 2 max(`,m).

Finally, we close this section with a third example of a fully-degenerate equation

∂

∂t
ρ(t, x) +

( ∂

∂x1

+
∂

∂x2

)
A(ρ(t, x)) −

( ∂2

∂x2
1

− 2
∂2

∂x1∂x2

+
∂2

∂x2
2

)
B(ρ(t, x)) = 0.(4.18)

In this case, there is a stronger, rank-one parabolic degeneracy with no regularizing effect from
the purely diffusion part, since 〈b(v)ξ, ξ〉 ≡ 0, ∀ξ1 − ξ2 = 0, and no regularizing effect from
the purely convection part where a(v) · ξ ≡ 0, ∀ξ1 + ξ2 = 0. Nevertheless, the combined
convection-diffusion does have a regularizing effect as demonstrated in
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Corollary 4.5. Consider the two-dimensional convection-diffusion equation

∂

∂t
ρ(t, x) +

( ∂

∂x1
+

∂

∂x2

){ 1

`+ 1
ρ`+1(t, x)

}

−
( ∂2

∂x2
1

− 2
∂2

∂x1∂x2
+

∂2

∂x2
2

){ 1

n + 1
|ρn(t, x)|ρ(t, x)

}
= 0.(4.19)

For n ≥ 2` it admits a regularizing effect, ρ0 ∈ L∞ ∩ L1 7→ ρ(t, ·) ∈ W s,1
loc (R2

x), of order
s < 6/(2 + 2n− `).

As before, the Sobolev exponent computed here is not necessarily sharp, and as a result no
gain of regularity is stated for n < 2`.

For proof, we use the averaging lemma 2.3 with the usual (p, q) = (2, 1), which yields a
Sobolev-regularity exponent of order s = βα(2 − µ − λ)/(α + 4 − 2µ), where α, β, λ and µ
characterize the degeneracy of the symbol associated with (4.19),

L
(
(τ, iξ), v

)
= Jiτ + Jv`i(ξ1 + ξ2) + J2|v|n|ξ1 − ξ2|2, τ 2 + |ξ|2 = 1.

We consider first those ξ’s, |ξ| = 1 such that |ξ1−ξ2| ≤ 1/5. Here we have (say) |ξ1+ξ2| ≥ 1/10,
so that ΩL

(
J ; δ

)
⊂ Ωa =

{
v : |v|` <∼ δ/J

}
, and (2.19) holds with (αa, βa) = (1/`, 1); moreover,

the growth of Lv sought in (2.20) is bounded by,

sup
v∈ΩL(J ;δ)

|Lv
(
(τ, iξ), v

)
| <∼ J

( δ
J

)(`−1)/`

+ J2
( δ
J

)(n−1)/`
<∼ J

λδµ,

where {
λ := 1/` and µ := 1 − 1/`, if n ≥ 2`,
λ := 2 − (n− 1)/` and µ := (n− 1)/`, if n < 2`.

In particular, if n < 2` then the Sobolev exponent vanishes since 2 − µ − λ = 0, and we
cannot deduce any regularizing effect in this case. If n ≥ 2`, however, we compute the Sobolev
exponent as before, s = s` = 1/(2` + 3). Next, we consider the case when |ξ1 − ξ2| ≥ 1/5,
so that ΩL

(
J ; δ

)
⊂ Ωb =

{
v : |v|n <∼ δ/J2

}
and (2.19) holds with (αb, βb) = (1/n, 2). As for

(2.20), we have

sup
v∈ΩL(J ;δ)

|Lv
(
(τ, iξ), v

)
| <∼ J

( δ

J2

)(`−1)/n

+ J2
( δ

J2

)(n−1)/n
<∼ J

2λδµ,

where {
λ = 1/n and µ = 1 − 1/n, if n ≤ `,
λ = 1/2 − (`− 1)/n and µ = (`− 1)/n, if n > `.

In particular, if n ≥ 2` we compute in this case a smaller Sobolev exponent s = 3/(3−2`+4n) ≤
s`. The regularity result follows from the bootstrap argument we discussed earlier which yields
the final Sobolev exponent s = 2βα(2 − µ− λ)/(α+ 2 − µ). 2

5. Nonlinear degenerate elliptic equations

We consider the nonlinear, possibly degenerate elliptic equation

−
d∑

j,k=1

∂2

∂xj∂xk
Bjk(ρ(x)) = S(ρ(x)), in D′(Γ), b(·) := B′(·) ≥ 0,(5.1)
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augmented with proper boundary conditions along the C1,1-boundary ∂Γ. We assume that the
nonlinear source term, S(ρ), is further restricted so that blow-up is avoided.
We begin with formal manipulations, multiplying (5.1) against η′(ρ), and ‘differentiating by
parts’ to find

−
d∑

j,k=1

η′(ρ)
∂2

∂xj∂xk
Bjk(ρ) − η′(ρ)S(ρ) =

= −
d∑

j=1

∂

∂xj

(
η′(ρ)bjk(ρ)

∂ρ

∂xk

)
+

d∑

j,k=1

η′′(ρ)bjk(ρ)
∂ρ

∂xj

∂ρ

∂xk
− η′(ρ)S(ρ) =

= −trace
(
∇x ⊗∇x Bη(ρ)

)
+ η′′(ρ)

〈
b(ρ)∇xρ,∇xρ

〉
− η′(ρ)S(ρ).

We arrive at the entropy inequalities associated with (5.1), stating that sufficiently smooth
solutions of (5.1) satisfy, for all convex η’s,

−trace
(
∇x ⊗∇x Bη(ρ)

)
≤ η′(ρ)S(ρ), Bη(ρ) =

{
Bη
jk(ρ) :=

∫ ρ

0

η′(s)bjk(s)ds
}d

j,k=1
.(5.2)

So far, we have not specified the notion of solutions for (5.1) since it seems that relatively little
is known about a general stability theory for degenerate equations such as (5.1). The difficulty
lies with the type of degeneracy which does not lend itself to standard elliptic regularity theory,
because the Bjk’s degenerate dependence on ρ, nor does it admit the regularity theory for
viscosity solutions, e.g., [CIL92], [CC95], because of their degenerate dependence on ρ rather
than ∇xρ. We refer to the works of Guan [Gu97], [Gu02] who shows that in certain cases, one
is able to ”lift” a C1,1-regularity of ρ into a statement of C∞-regularity. Using the existence
of smooth viscosity solutions in the uniformly elliptic case where b(v) ≥ λ > 0, (5.2) could be
then justified by the “vanishing viscosity limit”, forming a family of regularized solutions, ρλ

associated with bλ(s) := b(s) + λId×d and letting λ ↓ 0+. Next comes the kinetic formulation
of (5.1) which takes the form

−∇>
x · b(v)∇xχρ(v) + S(v)

∂

∂v
χρ(v) =

∂

∂v
m(x, v) in D′(Γ × Rv),(5.3)

for some nonnegative m ∈ M+ which measures ”entropy production”. Indeed, for an arbitrary
convex “entropy”, η, the moments of (5.3) yield

0 ≥ −
∫
η′′(v)m(x, v)dv =

∫
η′(v)

∂

∂v
m(x, v)dv =

= −
d∑

j,k=1

∫
η′(v)bjk(v)

∂2

∂xj∂xk
χρ(v)dv +

∫
η′(v)S(v)

∂

∂v
χρ(v)dv =

= −
d∑

j,k=1

∂2

∂xj∂xk
Bη
jk(ρ) −

∫ (
η′(v)S(v)

)′
χρ(v)dv = −trace

(
∇x ⊗∇x Bη(ρ)

)
− η′(ρ)S(ρ).

Thus, the kinetic formulation (5.3) is the dual statement for the entropy inequalities (5.2). We
postulate that ρ is a kinetic solution of (5.1) if the corresponding distribution function χρ(x)(v)
satisfies (5.3), and we address the regularizing effect of such kinetic solutions.
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To use the averaging lemma, we first extend (5.3) over the full Rd
x × Rv-space. Let ψ be

C∞
0 (R+)-cut-off function, ψ(s) ≡ 1 for s ≥ ε, and let ζ(x) denote the smoothed distance

function to the boundary, ζ(x) = ψ(dist(x, ∂Γ)), then f(x, v) := χρ(x)(v)ζ(x) satisfies, in
D′(Rd

x × Rv),

−
d∑

j,k=1

bjk(v)
∂2

∂xj∂xk
f(x, v) =

∂

∂v
ζ(x)m(x, v) +

d∑

j,k=1

∂

∂xj

(
bjk(v)ζxk

(x)χρ(v)
)

+
∂

∂xk

(
bjk(v)ζxj

(x)χρ(v)
)

+

S(v)ζ(x)
∂

∂v
χρ(v) −

d∑

j,k=1

bjk(v)ζxjxk
(x)χρ(v)

=:
∂

∂v
g1(x, v) + Λη

xg2(x, v) + g3(x, v) + g4(x, v).(5.4)

Assume that (5.1) is non-degenerate in the sense that there exists an α ∈ (0, 1) such that

∣∣∣Ωb(δ)
∣∣∣ <∼ δ

α and sup
|ξ|=1

sup
v∈Ωb(δ)

|〈b′(v)ξ, ξ〉| <∼ δ
1−α, Ωb(δ) :=

{
v ∈ I : 〈b(v)ξ, ξ〉 ≤ δ

}
.(5.5)

We examine the contribution of each of the four terms on the right of (5.4) to the overall
W s,1-regularity of f , appealing to the different averaging lemmata term-by-term. The first
term on the right involves the bounded measure g1 = ζm; averaging lemma 2.3 with the usual
(p, q) = (2, 1) then yields that the corresponding average f 1 has a W s1,1

loc -regularity of order
s1 < 2θ1, θ1 = α/(3α + 2). The second term on the RHS of (5.4) involves the gradient
of the uniformly bounded term g2 =

∑
bjk(v)ζxk

(x)χρ(v); here we can use averaging lemma

2.1 with η = q = 1 to conclude that the corresponding average f 2 has W s2,1
loc -regularity of

order s2 < θ2 = α/(α+ 2) (in fact, with q = 2 one concludes a better W s2,2 regularity of order
s2 < α/2). The remaining two terms on the RHS of (5.4) yield smoother averages and therefore
they do not affect the overall regularity dictated by the first two. Indeed, ∂vχρ(v) and hence
g3(x, v) = S(v)ζ(x)∂vχρ(v) is a bounded measure and averaging lemma 2.1 with η = N = 0

implies that the corresponding average f3 belongs to the smaller Sobolev space, W s3,1
loc of order

s3 < 2θ3, θ3 = α/(α + 2). Finally, the last term on the right of (5.4) consists of the bounded
sum, g4 = −

∑
bjk(v)ζxjxk

(x)χρ; with η = N = 0 and q = 2, the corresponding average f4 has

a W s4,2
loc regularity of order s4 < 2θ4, θ4 = α/2.

Next, we iterate the bootstrap argument we mentioned earlier in the context of hyperbolic
conservation laws. The first W s1,1-bound together with the L∞-bound of f imply aW σ1,2

loc -bound

with σ1 = s1/2, which in turn yields the improved regularity of f 1 ∈ W s,1
loc , s < (1−θ1)σ1 +2θ1.

Thus, for the first term we can iterate the improved regularity, s1 7→ (1 − θ1)s1/2 + 2θ1,
converging to the same fixed point we had in the parabolic case before, s1 < 2α/(2α + 1).
The second term requires a more careful treatment: as we iterate the improved regularity of
χρ ∈ W s,1

loc , we can express the term on the right of (5.4) as Ληsg2 with ηs := 1 − s and with g2

standing for the sum of L1-bounded terms, g2 = Λs
∑
bjk(v)ζxk

χρ(v). Consequently, averaging
lemma 2.1 yields the fixed point iterations s2 7→ (1−θ2)s2/2+(2−ηs2)θ2 with limiting regularity
of order s2 < α. The remaining two terms are smoother and do not affect the overall regularity:
a similar argument for the third term yields the fixed point iterations, s3 7→ (1− θ3)s3/2 + 2θ3
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with a fixed point s3 < 2α/(α+1), while the fourth term remains in the smaller Sobolev space
W α,2. We summarize with the following statement.

Corollary 5.1. Let ρ ∈ L∞ be a kinetic solution of the nonlinear elliptic equation (5.1) and
assume the non-degeneracy condition (5.5) holds. Then we have the interior regularity estimate
for all D ⊂ Γ,

ρ(x) ∈ W s,1
loc (D), s <





α, if α < 1/2,

2α

2α+ 1
, if 1/2 < α < 1.
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France, 122 (1994), pp. 27-76.
[BC79] H. Brezis and M. Crandall, Uniqueness of solution of the initial-value problem for ut − ∆φ(u) = 0, J.

Math. Pure Appl. (9) 58 (1979), 153-163.
[BD99] F. Bouchut and L. Devillettes, Averaging lemmas without time Fourier transform and application to

discretized kinetic equations, Proc. of the Royal Soc. of Edinburgh, 129A(1) (1999), pp. 19–36.
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applications au calcul de la limite de la valeur propre principale d’un opératour de transport, C. R. Aacd.
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